

A SDN solution for Wireless Sensor Networks

DIEEI University of Catania

Outline

- Motivations
- Related work
- SDN-WISE
- Prototype and testbed
- Performance evaluation
- Conclusions and future work

Motivations

A few facts about wireless sensor networks

- Mature technology since early 2000s
- Challenging communication & networking environment
- Requirements extremely application specific
- The bottom-line...

There is nothing like a onefits-all solution

Upsides:

- Large number of solutions proposed
- Deep understanding of the WSN domain
- Zillions of papers, citations, academic promotions, projects

Downsides:

- High solution specialization
- Market fragmentation
- Burden on application developers
- Low reusability

The consequence...

It's not taking off!

1.Overcome fragmentation2.Ease life of developers

Related work

SDN & OpenFlow

- Software Defined Networking (SDN) clearly separates:
 - Data plane: run by network Switches
 - Control plane: implemented by a software program running on a server (the Controller)
- Modifying the behavior of the network as easy as it is installing a new piece of software on a PC
- OpenFlow is the most popular implementation of the SDN paradigm

SDN in WSNs

- Few attempts to extend SDN to WSNs:
 - Software Defined Wireless Networks (SDWN), 2012
 - Sensor OpenFlow, 2012
- Different requirements:

Traditional wired networks

Velocity

WSNs

Efficiency

Flexibility

Memory occupancy

SDN-WISE: Basic concepts

- Directly derived by OpenFlow
- Separation between
 - data plane (executed by sensor nodes)
 - control plane (executed by the Controller)
- When an event (e.g., the arrival of a packet) occurs sensor nodes behave as specified in the WISE Table
- If there is no relevant information in the WISE Table → Ask the Controller
- The Controller replies sending a new entry for the WISE Table
- A simple protocol defined to allow nodes to:
 - Learn the shortest path towards the (closest) sink(s)
 - Discover the neighboring nodes
 - Periodically report local information to the Controller (through the sink)

	N	hing Rule		Matching Rule					Matching Rule					Action					Statistics		
Op.	Size	s	Offset	Value	Op.	Size	s	Offset	Value	Op.	Size	s	Offset	Value	Туре	м	s	Offset	Value	πι	Counter
=	2	0	2	В	>	2	0	10	x _{Thr}	=	1	1	0	0	Modify	1	1	0	1	122	23
=	2	0	2	В	≤	2	0	10	x _{Thr}	=	1	1	0	1	Modify	1	1	0	0	122	120
=	2	0	2	В	-	0	-	-	-	-	0	-	-	-	Forward	0	0	0	D	122	143
=	2	0	2	А	=	1	1	0	0	-	0	-	-	-	Drop	0	0	-	-	100	42
=	2	0	2	А	=	1	1	0	1		0	-	-	-	Forward	0	0	0	D	100	32

SDN-WISE Architecture

Major features (compared to OpenFlow)

- 1. Statefulness
- 2. Flexible definition of rules
- **3.** Support of duty cycles
- 4. Support of multitenancy (beyond *slicing*)
- 5. Lots of deployment options and programming languages
- Integration with simulation environments (OMNET++ & OPNET)

Statefulness

- OpenFlow is stateless
- SDN-WISE is stateful: a buffer of memory is reserved for state information
 - Rules can state info to classify packets in flows
 - Actions can modify state info
- Why? Reduce the number of interactions with the Controller if local policies must be applied
- 3 exemplary uses of the state...

Exemplary use of the state (1)

- Conditional forwarding:
 - C must forward packets from A only, if the values coming from B are higher than a threshold

Exemplary use of the state (2)

Support of QoS:

- A congested node must give different priorities to different flows
- Level of congestion stored as state information
- Different drop probabilities given to different flows in the WISE-table in case of congestion

Exemplary use of the state (3)

Multipath routing

Flexible definition of rules

- Rules consider:
 - <= 3 windows (<= 2 byte) in the packet (in any position), or</p>
 - any portion (<= 2 byte) of the memory for state
 - any relational operator (=, <, >, <=, >=, !=, Kalman filters)
- Slower than OpenFlow but higher efficiency and more sophisticated programmability

Support of duty cycle

- The set of actions has been enlarged to support duty cycle
- It is possible to turn the radio off for a certain time interval

Multitenancy (beyond slicing)

- Slicing assigns each packet to only one tenant
- In WSN the same piece of data can be of interest of several applications
- WISE-Visor a new layer which abstracts the real network and creates (different) views for different tenants
- At each node a packet belongs to all tenants that agree on its treatment
- When there is a disagreement, a new copy of the packet is created

Lots of deployment options and programming languages

Prototype and testbed

Prototype

- Sensor nodes: Embit IEEE 802.15.4 boards (EMB-Z2530PA)
 - 2.4 GHz ISM
 - Texas Instruments CC2530
 - Memory: 8 kB RAM + 256 kB Flash memory
 - 40 kB of memory used for MAC (TIMAC v.1.4.0)
 - 10 kB of memory used for SDN-WiSe
- Control plane: WISEVisor + Controllers hosted in the same PC
 - Intel(R) Core(TM) 2 CPU, 2.40 GHz
 - 4GB of RAM
 - Windows 7, 32 bit
 - Controllers implemented Java 7

22 25 1 3 ഗ Ð 39 8 26 ട്ട ដ ဗ 28 27 ŝ <u>4</u> 23 ¥ မ္မ 32 Sink Sensor node

Testbed

Performance results

Unicast RTT

Fig. 4. Unicast traffic: RTT as a function of the number of hops when transmitting 20 bytes of payload in static conditions.

30 SDWN ZigBee 6LoWPAN 25 20 [sm] 15 10 5 0 20 30 Payload [Byte]

Unicast RTT

Fig. 5. Unicast traffic: RTT as a function of the payload size in the case of one hop and static conditions.

Multicast RTT

Fig. 7. Multicast traffic: Average RTT as a function of the payload size.

Multicast RTT

Fig. 8. Multicast traffic: Average PLR as a function of the payload size.

Conclusions

- SDN-WISE is a SDN solution for WSNs
- SDN-WISE has several specific features designed to achieve efficiency in WSNs
- A prototype of SDN-WISE has been implemented and is available for download:

http://sdn-wise.dieei.unict.it

- EuWIN facility (Newcom#) has been exploited to run experimentation
- Performance comparison has been carried out with respect to ZigBee and 6LOWPAN

Current work

- Implement a framework for in-network processing in SDN-WISE
 - MapReduce approach
- Implementation in Contiki
- Integration with Open Network Operating System (ONOS)

